

An Introduction to High Country Tek Inc.

SAE J1939 Overview 2015

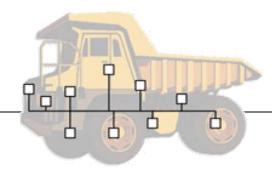
Date: Wednesday, December 09, 2015 J1939 Overview – Oct 2015.pptx

Private & Confidential - © 2013 High Country Tek Inc. All rights reserved.

Today's Agenda

Introductions.

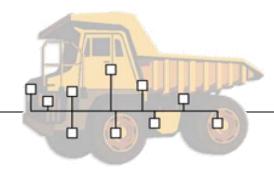
SAE J1939 Overview


HCT code examples.

HCT Products for J1939

Information sources.

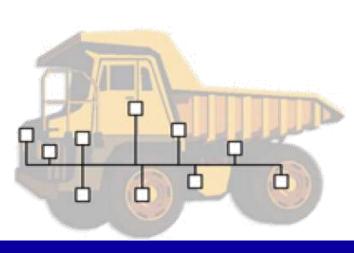
SAE J1939 - Information



J1939 comprises the following sub standards:

- J1939 Recommended Practice for a Serial Control & Communications Vehicle Network
- J1939/11 Physical Layer 250k bits/s, Shielded Twisted Pair
- J1939/13 Off-Board Diagnostic Connector
- J1939/21 Data Link Layer
- J1939/31 Network Layer
- J1939/71 Vehicle Application Layer
- J1939/73 Application Layer Diagnostics
- J1939/81 Network Management

SAE J1939 - General Aspects

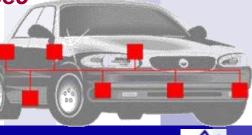


- Higher-Layer protocol based on Controller Area Network (CAN)
- Provides serial data communications between Electronic Control Units (ECU)
- Can be used in any kind of heavy duty vehicle.
- Protocol features based on J1708 (RS485) and J1587
- Clever protocol design with very little overhead
- Takes full advantage of all standard CAN features
- Detailed documentation ONLY available through SAE.

SAE J1939 - Applications

J1939 protocols are used in:

- Diesel power-train applications
- Inter-vehicle networks for trucks & busses
- ✤ Ag and Forestry machinery (ISO 11783)
- Truck-Trailer connections
- Military vehicles (MILCAN)
- Mining, research and drilling equipment
- Fleet management systems
- Recreational vehicles


Private & Confidential.

Marine navigation system (NMEA2000)

What is CAN - General Aspects

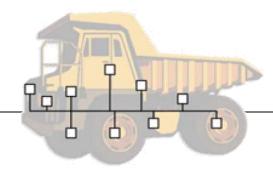
- Serial network for embedded solutions
- Originally designed for Bosch for automotive industry
- Became very popular with industrial automation
- Network technology established among Micro-controllers
- Well suited for high speed /real time applications
- Replaces expensive Dual-port RAM technology
- Excellent error detection and fault confinement
- Extremely reliable in field operation and in extreme conditions
- Max baud rate of 1MBit/sec SAE J1939 uses 250kBit/sec

SAE J1939 - Quick Reference

• J1939 takes advantage of CAN features such as:

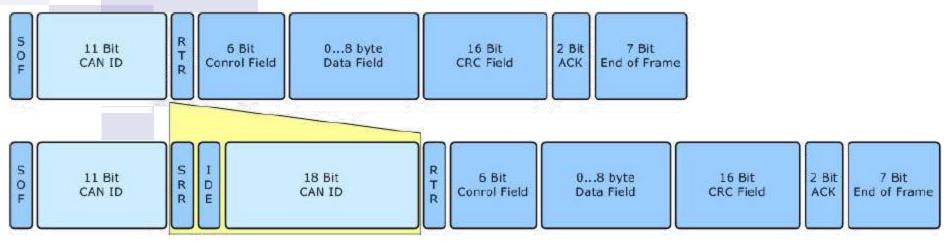
Maximum reliability

- Excellent error detection and fault confinement
- Collision-free bus arbitration

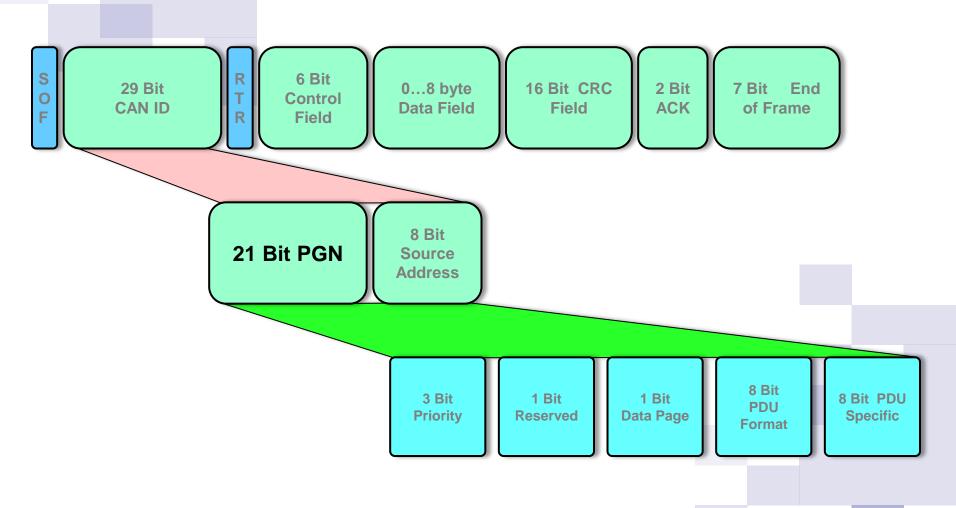


SAE J1939 - Quick Reference

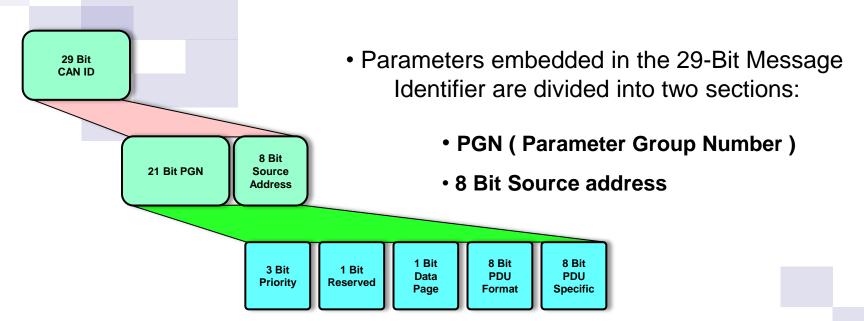
- J1939 specifications:
 - Shielded, twisted pair of wires.
 - Max. network length of 40 meters (~120ft).
 - Standard baud rate of 250 kBit/sec (mobile equipment).
 - Used 29-Bit message ID.
 - Max. 30 nodes (ECU's) in a network.
 - > 120 Ω termination resistors (2 off).


SAE J1939 - Quick Reference

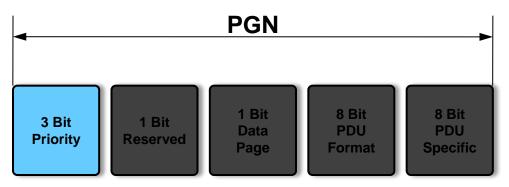
- J1939 specifications:
 - Does <u>NOT</u> support Master/Slave or Client/Server configuration
 - Does <u>NOT</u> support node monitoring
 - Features 'Address Claiming' immediately after network start-up
 - Allows 'Plug-and-Play' feature
 - Allows segmentation of messages larger than 8 bytes



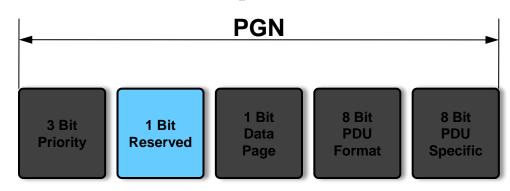
SAE J1939 - Message Format (J1939/21)



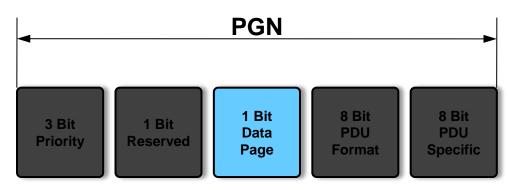
- CAN standard 2.0A was extended to 2.0B to allow a 29-Bit identifier
- IDE Bit indicates 11-Bit or 29-Bit Message Identifier
- Both formats can co-exist on the same CAN bus
- MilCAN uses J1939 29-Bit Message ID and CANopen 11-Bit Message ID
- J1939/21 also defines the segmentation of messages larger than 8 bytes



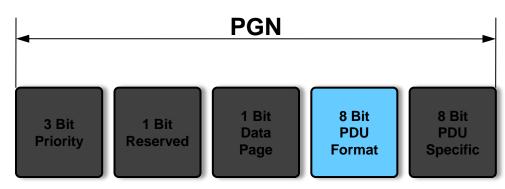
- PGN Identifies the parameter group (PG)
- PG's point information of parameter assignments within 8 byte CAN data field, repetition and priority.
- 8672 different Parameter Groups per page



• Priority:

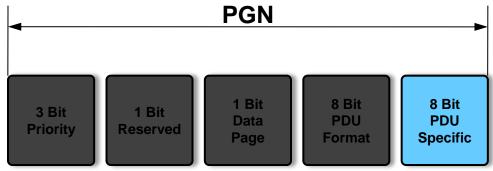

- First three bits represent priority during arbitration process
- Provides eight priority levels
- A value of 0 (000) = Highest priority
- A value of 8 (111) = lowest priority
- High priority messages assigned to time critical data such as torque, control data from transmission to engine
- Lower level priorities suitable for non-time critical data such as engine configuration data.

- Reserved
 - Reserved for future purpose
 - Should always be set to 0 when transmitting messages.



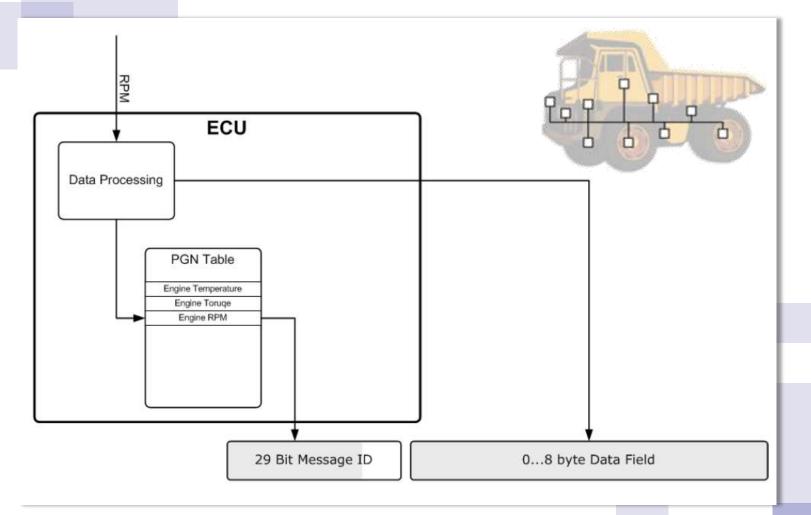
• DP – Data Page:

- Page selector for PDU (Protocol Data Unit) Format (PF) field
- Currently at 0, Pointing to page 0
- Page 1 for future purpose



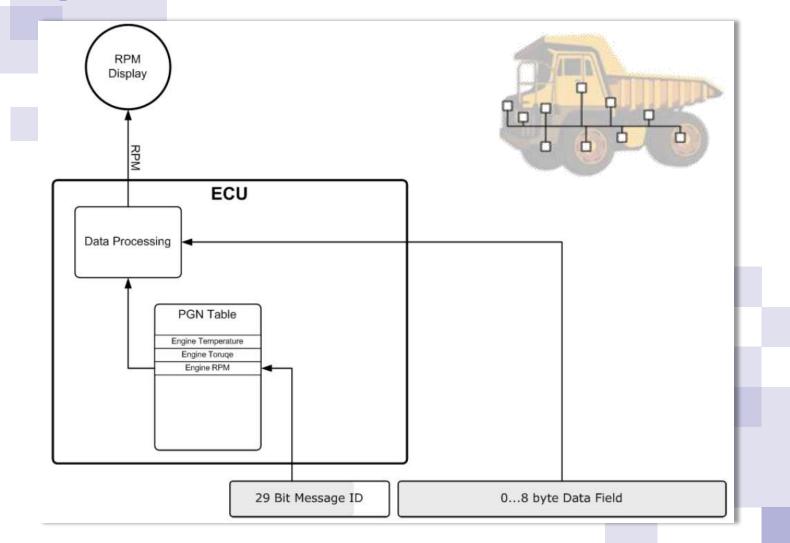
• PDU Format (PF):

- PF = 0-239 (PDU1) indicates a destination address in PS
- PF = 240-255 (PDU2) indicates extension to PDU Format (PF)

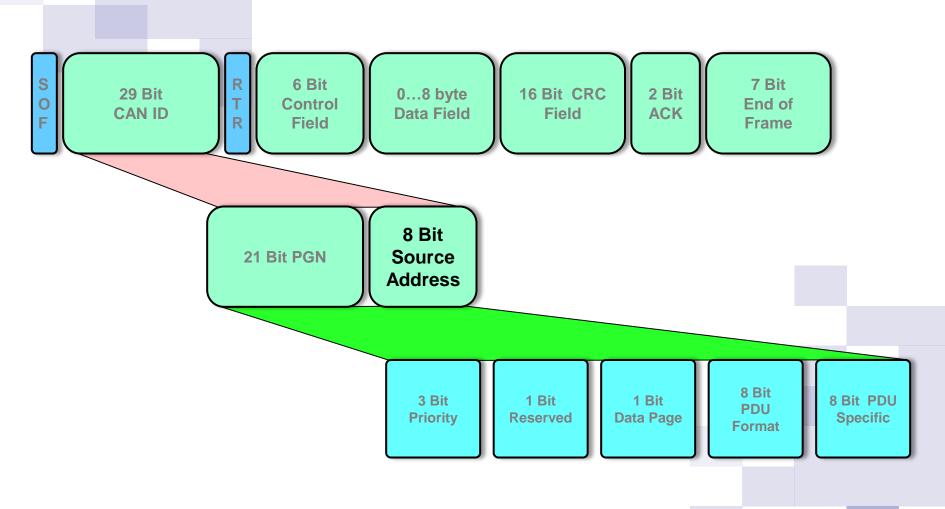


• PDU Specific (PS):

• Content interpreted according to information in PDU Format (PF)



Example - Sending RPM



Example - Receiving RPM

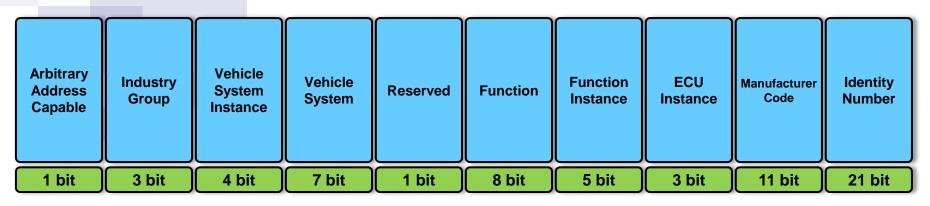
SAE J1939 - Source Address

SAE J1939 - Source Address

- Source Address (SA) = Last 8 bits of 29-Bit message identifier
- Source Address = address of transmitting ECU (node)
- A total of 254 addresses available
- Every address must be unique within network
- ECU's <u>CANNOT</u> share address
- PGN's are independent of Source Address
- Every ECU is allowed to transmit any message

NOTE:

The CAN standard in itself does NOT support node (ECU) addresses, only message ID's.



SAE-J1939 - Network Management

- Network management defined in SAE J1939/81
- Handles auto allocation of node addresses per address claiming procedure
- Address claiming not supported per default in any other high level protocol
- Network Management identifies ECU's and their primary function
- Node monitoring is not defined in J1939 must be application specific
- J1939 does not support Master/Slave or Client/Master must be application specific.

SAE – J1939 - Address & Name

- SAE J1939 defines 64-Bit name to uniquely identify each ECU
- Each ECU must hold at least one NAME and one ADDRESS for identification purposes
- ECU ADDRESS defines the source or destination for message
- ECU NAME indicates main function performed at ECU address
- Function instance indicator used when multiple ECU's with same main function share the same network.

SAE – J1939 - Address Claiming

- 64-Bit name to uniquely identify nodes (ECU's)
- Necessitates unreasonable resources to maintain standard communications
- Each ECU uses an 8-Bit address to identify the source of a message or to access (destination address) another ECU in the network
- Address Claim Procedure:
 - Designed to assign addresses to ECU's right after the network startup
 - Assuring that assigned address is unique to ECU
 - SAE J1939 standard defines Preferred Address to commonly used devices in order to minimize the rate of multiple devices demanding the same address

SAE – J1939 - Address Claiming

Two possible scenarios:

Sending an address Claimed message (Standard):

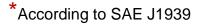
- ECU sends Address Claimed message into the CAN bus
- ECU's receiving address claim will record & verify claimed address with internal address table.
- In case of address conflict ECU with lowest NAME value will succeed
- Remaining ECU's must claim different address or stop transmitting to network

Request for Address Claimed message:

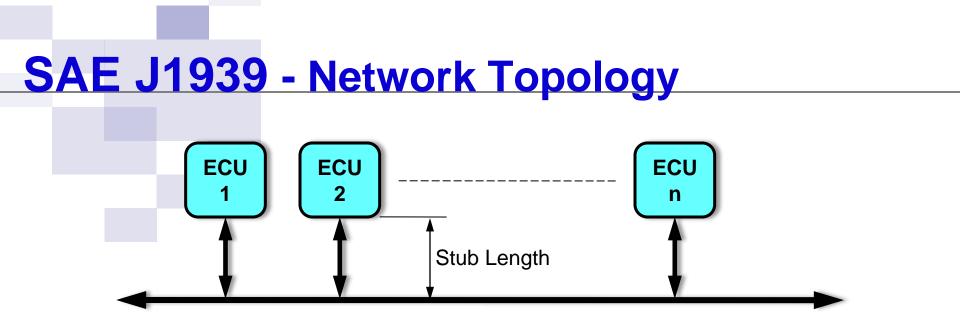
- Necessary procedure for ECU's powering up late (E.g. trailers, diagnostics tools, e.t.c.)
- Used to determine and claim available address or to find out which ECU's are currently on the network

SAE J1939 - Communications Methods

Destination Specific Communications:

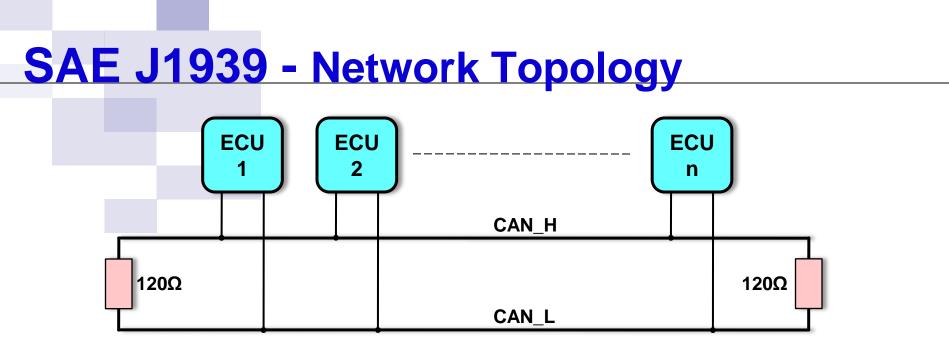

- USE PDU1 (PF Values 0 to 239)
- Destination address required:

Broadcast Communications:

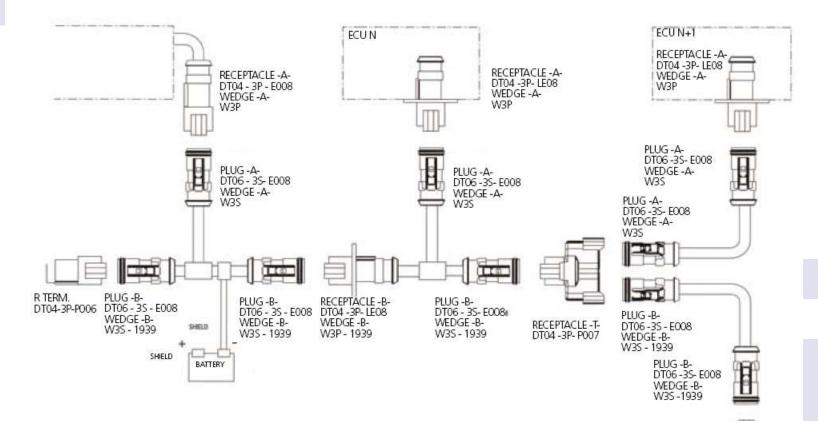

- Use PDU2 (PF values 240 to 255)
- Sending a message from a single or multiple sources to single destination
- Sending a message from a single or multiple sources to multiple destinations

Proprietary Communications*:

- Use either PDU1 or PDU2
- CAN be either Destination Specific or Broadcast
- Use propriety PGN's



- ECU's in a J1939 network segment are connected by a single, linear shielded twisted pair of wires.
- Wiring topology of the network should be as straight as possible to minimize electrical reflections.
 - Short stub lengths
 - Avoid complex network structures



- Each bus segment should be terminated by resistors, typically $2x 120\Omega$
- Termination resistors should always be on both ends of the bus
- Dividing network into sub-networks may be necessary (for truck and trailer)
- Segmentation requires bridges

J1939 - Connector Usage

SAE J1939 Connector Usage

http://www.deutschipd.com/cans.pdf

R TERM. DT04 - 3P- P006

J1939 - Off-Board diagnostic connector

- J1939/13 defines a standard connector for external diagnostics
- Deutsch HD10 9 1939 (9 pins, round connector)

HIGH COUNTRY TEK

Electro-Hydraulic Control Solutions

HCT Products Compatible with J1939

HCT Products for J1939

Fan Controllers

EMC-6, EMC, HFS-J

- Receive/Transmit
- Standard/Custom Messages

Displays

PV780, PV450, PV380

- Receive/Transmit
- Standard/Custom Messages

Configurable &

Programmable Valve Drivers

evc, DVC700 Series

- Receive/Transmit
- Standard/Custom Messages

HIGH COUNTRY TEK

Electro-Hydraulic Control Solutions

Code Examples

Intella[™] Suite

Programming Tool:

- All variables are 16 bit words (65535d), Unsigned.
- Integer math, no decimal points.
- Decimal to Hexadecimal Calculator

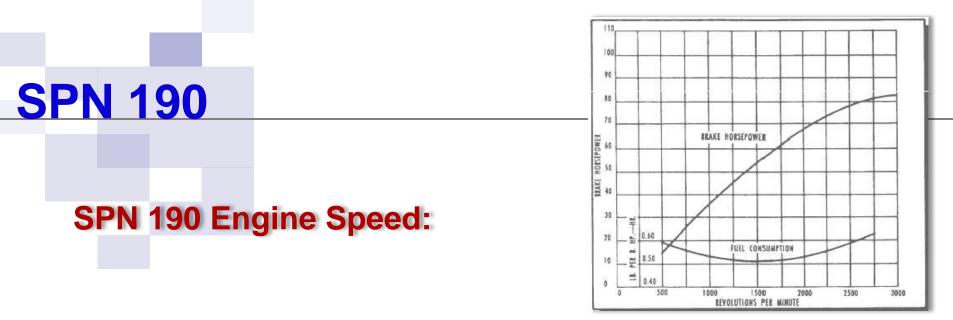
PGN 61444

Electronic Engine Controller 1 - EEC1:

- Engine related parameters
- Transmission Repetition engine speed dependent
- Data Length: 8
- Data Page: 0
- PDU Format: 240
- PDU Specific: 4
- Default Priority: 3
- Parameter Group Number: 61444 (0xF004)

Start Position	Length	Parameter Name	SPN
1.1	4 bits	Engine Torque Mode	899
2	1 byte	Driver's Demand Engine - Percent Torque	512
3	1 byte	Actual Engine - Percent Torque	513
4-5	2 bytes	Engine Speed	190
6	1 byte	Source Address of Controlling Device for Engine Control	1483
7.1	4 bits	Engine Starter Mode	1675
8	1 byte	Engine Demand – Percent Torque	2432

PGN 61444


PGN 61444

PGN – Parameter Group Number (EEC1):

- PGN 61444d → F004h
- F0h \rightarrow 240d, (61444 / 256 = 240)
- $04h \rightarrow 4d$

Data Length:	2 bytes	
Resolution:	0.125 rpm/bit, 0 offset	
Data Range:	0 to 8,031.875 rpm	
Туре:	Measured	
Supporting information:	PGN 61444	

PGN 65272

PGN 65272 (R) Transmission Fluids - TF

- Transmission Repetition 1 s
- Data Length: 8
- Data Page: 0
- PDU Format: 254
- PDU Specific: 248
- Default Priority: 6
- Parameter Group Number: 65272 (0xFEF8)

PGN 65272

Start Position	Length	Parameter Name	SPN
1	1 bits	Clutch Pressure	123
2	1 bits	Transmission Oil Level	124
3	1 bits	Transmission Filter Differential Pressure	126
4	1 bytes	Transmission Oil Pressure	127
5 - 6	2 byte	Transmission Oil Temperature	177
7	1 byte	Transmission Oil Level High / Low	3027
8.1	4 bits	Transmission Oil Level Countdown Timer	3028
8.5	4 bits	Transmission Oil Level Measurement Status	3026

SPN 177

SPN 177 Transmission Oil Temperature:

- Temperature of the transmission lubricant.
- Data Length: 2 bytes
- Resolution: 0.03125 deg C/bit, -273 deg C offset
- Data Range: -273 to 1735 deg C
- Type: Measured
- Supporting information: PGN 65272

SPN 177 - Detail

'Engineering units to J1939 counts (1735 + 273) / 0.03125 = 64256

Counts = 0 to 64256

' 0.03125/C gain, -273 offset

if (transmission.srcaddr = 3) then transmission_oil_temperature = transmission.temp_low + (transmission.temp_high * 256) end if

' calculate max_ transmission_oil_temperature, (temperature in Deg C + 273) / 0.03125
if (transmission_oil_temperature > max_ transmission_oil_temperature) then
End if

PGN 0 Torque/Speed Control 1 - TSC1:

NOTE:

- Retarder may be disabled by commanding a torque limit of 0%.
- Using 'limit mode' allows the use of the retarder only up to the limit specified in the request.

This can be used to permit retarding of up to 50%, for example, if:-

• That limit is required by some device such as an EBS,

Or

• It can disable the use of the retarder by others, as when an ABS controller detects wheel slip.

PGN 0 Torque/Speed Control 1 - TSC1:

- Transmission Repetition when active; 10 ms to engine 50 ms to retarder
- Data Length: 8
- Data Page: 0
- PDU Format: 0
- PDU Specific: DA PGN Supporting Information:
- Default Priority: 3
- Parameter Group Number: 0 (0x0)

Start Position	Length	Parameter Name	SPN
1.1	2 bits	Engine Override Control Mode	695
1.3	2 bits	Engine Requested Speed Control Conditions	696
1.5	2 bits	Override Control Mode Priority	897
2-3	2 bytes	Engine Requested Speed/Speed Limit	898
4	1 byte	Engine Requested Torque/Torque Limit	518

' CAT engine RPM control
engine_speed_cmd = low_engine_speed

' calculate RPM command based on Resolution: 0.125 rpm/bit, 0 offset
' Data Range: 0 to 8,031.875 rpm

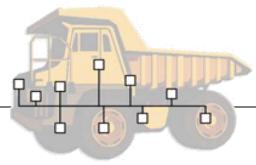
engine_speed_calc = (engine_speed_cmd * 1000) / 125
' check for maximum RPM command of 1800 RPM
if (engine_speed_calc > 14400) then
 engine_speed_calc = 14400
end if

' send low byte then high byte

eng_rpm_cmd.RPM_cmd_lo = engine_speed_calc and 0xff eng_rpm_cmd.RPM_cmd_hi = engine_speed_calc / 256

' sets engine control performance eng_rpm_cmd.ovride_ctrl_mode = 9 eng_rpm_cmd.disable = false

🗒 J1939 Messag	ge Setup			×
Command Name: Control:	eng_rpm_cr Send Data	nd •	1	
Maximum Time: PDU Format: PDU Specific: Priority: Data Length:	÷0 ÷0	PGN #: 0 (0x0000)	Set Extende	
Show Dnet Offse		-	Default Dat Default Send [
Byte 1 Name: _C Byte 2 Name: _F			÷9 ÷224	
Byte 3 Name: _F Byte 4 Name: _{to}			÷0 ÷0	-
Byte 5 Name:	lummy5		÷0	-
Byte 7 Name:	lummy6 lummy7		÷0	-
Byte 8 Name: 🛛	lummy8		÷0	


HIGH COUNTRY TEK

Electro-Hydraulic Control Solutions

Information Sources

SAE J1939 – Standards Collection 🔂

J1939 comprises the following sub standards:

- J1939 Recommended Practice for a Serial Control & Communications Vehicle Network
- J1939/11 Physical Layer 250k bits/s, Shielded Twisted Pair
- J1939/13 Off-Board Diagnostic Connector
- J1939/21 Data Link Layer
- J1939/31 Network Layer
- J1939/71 Vehicle Application Layer
- J1939/73 Application Layer Diagnostics
- J1939/81 Network Management

ONLY available from SAE – go to website to download.

http://www.sae.org/servlets/index

HCT Contacts.

Name	Position	Phone	Cell / Mobile	E-mail
Rob Hulse	Business Development	1 530 264 4185	1 530 277 7801	rhulse@hctcontrols.com
Brandon Coursey	Sales Engineer	1 530 264 4177	1 530 277 1923	bcoursey@hctcontrols.com
Karen Railey	Order Processing	1 530 264 4184	-	krailey@hctcontrols.com
Matt Meek	Customer Service, RMA/Returns	1 530 264 4179	-	mmeek@hctcontrols.com
Mike Lucas	Engineering	1 530 264 4188	-	mlucas@hctcontrols.com
John Clark	Engineering	1 530 264 4189	-	jclark@hctcontrols.com

Head Office & Customer support:

High Country Tek Inc. 208 Gold Flat Court Nevada City, CA, 95959

Ph: 1 530 265 3236 Fx:-1 530 265 3275 For latest product, technical and software information, visit us at:

www.hctcontrols.com

Electronic Controller Solutions for the Global Fluid Power Industry

HIGH COUNTRY TEK

Electronic Controller Solutions for the Global Fluid Power Industry

Thank You for Your Time.

www.hciconirols.com

