PV485 I/O
 Application Notes

Pin \#	Pin Assignments
1	USB D-
2	USB ID
3	Digital Output 1 (Low side, 500 mA)
4	Digital Output 3 (Low side, 500 mA)
5	Frequency Input (Alternator and Mag)
6	Digital Input 1
7	Digital Input 3
8	A/D Input 2 (0-5v, 4-20 mA, Resistive)
9	A/D Input 4 (0-5v, 4-20 mA, Resistive)
10	Analog Output (0-5 V)
11	N/C
12	N/C
13	USB Shield
14	CAN -
15	Digital Output 2 (Low side, 500 mA)
16	Digital Output 4 (Low side, 500 mA)
17	Freq Input Return
18	Digital Input 2
19	A/D Input 1 (0-5v, 4-20 mA, Resistive)
20	A/D Input 3 (0-5v, 4-20 mA, Resistive)
21	A/D Gnd
22	Analog Output Gnd
23	N/C
24	USB D+
25	USB Vbus
26	CAN +
27	Ignition
28	Batt+
29	Batt-
30	Batt2+
31	N/C
32	N/C
33	N/C
34	RS485 -
35	RS485 +

PIN SPECIFICATIONS FOR AMPSEAL STYLE CONNECTION

Digital Inputs

DI-1 and DI-2:

Active Low Inputs(Switch input state will be Open or ground) Internally pulled high to 5 Vdc through a 50Kohm resistor
Switch wetting Current: 100uAmps

DI-3:
Active High Input (Switch input state will be Open or Battery+)
Internally pulled low to ground through a 50Kohm resistor Switch Wetting Current: 2mA@24Vdc, 1mA@12Vdc

Typical Active Low Digital Input Wiring

Typical Active High Digital Input Wiring

Digital Outputs

DO-1 to DO-4:
Low Side Open Drain FET (Output State will be Open or switched to Ground)
Maximum Current Sink: 500mA (See product specification)
Maximum Switching Voltage: 32 Vdc
WARNING: When an inductive load such as a relay coil is de-energized a large voltage spike is generated reaching hundreds of volts that can damage the digital output FET.
When driving inductive loads, it is recommended to place a flyback diode across the load in a reverse bias manner to shunt the reverse voltage spike (back-EMF) that is generated when the digital output goes from a on state to off.

Typical Digital Output Wiring

Analog Inputs

Software Selectable Options:

NOTE: Maximum analog input voltage is 5 Vdc for any mode selected.

- $0-5 \mathrm{Vdc}$ Mode: Expects a $0-5 \mathrm{Vdc}$ signal from active sensors or potentiometer voltage, or similar.
- $4-20 \mathrm{~mA}$ Mode: Expects a Standard $4-20 \mathrm{~mA}$ current loop input, internally shunted to ground through a 200 ohm resistor.
- Resistive Mode: Expects a resistive sender input. Internally pulled high to $5 \mathrm{~V} d \mathrm{~d}$ through a 400ohm resistor
- Digital Input 0-5Vdc Mode: Expects a switch input to open circuit or 5Vdc
- Digital Input 400ohm Pullup Mode: Expects a switch input to open circuit or ground, Internally pulled high to 5 Vdc through a 400 ohm resistor

Transfer Functions:

Note: The A/D converter has a range of $0-5 \mathrm{Vdc}$ with 10 bits of resolution so the A/D count range will be 0-1023.

1) $0-5 \mathrm{Vdc}$ Mode: Powervision Returns A / D Counts, $0 \mathrm{Vdc}=0 \mathrm{~A} / \mathrm{D}$ counts, $5 \mathrm{Vdc}=1023 \mathrm{~A} / \mathrm{D}$ counts, scale is linear.
2) 4-20mA Mode: Powervision Returns A/D Counts, $1 \mathrm{~mA}=41.35 \mathrm{~A} / \mathrm{D}$ Counts linear scale, $4 \mathrm{~mA}=165$ Counts, $20 \mathrm{~mA}=827$ Counts, Maximum Input Range $=0 \mathrm{~mA}$ to 24.7 mA ,
3) Resistive Mode: Powervision Returns A/D Counts, Usefull range is 0 to 2000 ohms, best resolution is $0-500$ ohms. Above 2000 ohms there is progressively less A/D count change VS resistance change. The analog input is pulled high to 5 Vdc through 400 ohm resistor.

$$
\text { Formula: A/D Count }=(\operatorname{Rin} \times 1024) /(\operatorname{Rin}+400)
$$

4) Digital Input $0-5 \mathrm{Vdc}$ Mode: Powervision Returns a 1 with a 5 Vdc input, and 0 with a 0 Vdc input (or open circuit). Switch trigger points are 4 Vdc when going from low to high, 1 Vdc when going from high to low.
5) Digital Input 400ohm Pullup Mode: Powervision Returns a 1 on open circuit, and 0 when closed to ground.

Typical 0-5Vdc Analog Input wiring

Typical 4-20mA Analog Input Wiring

Typical Resistive Sender Analog Input Wiring

Typical Digital Mode-400ohms Analog Input Wiring

Typical Digital Mode-0 to 5Vdc Analog Input Wiring

Analog Output

The analog output sources a voltage of $0-5 \mathrm{Vdc}$ and is designed to drive a high input impedance device like the analog input of a engine controller for throttle control or similar. As such the maximum current it is capable of driving without dropping its output voltage is about 1 mA at the full output level of 5 Vdc . This equates to a load of about 4.4Kohms. A common ground between the equipment is required.
The output is designed for process control and not to replicate a frequency signal outut.

Typical Analog Output Wiring

